3.11 \(\int x^2 \sin (\frac {1}{4}+x+x^2) \, dx\)

Optimal. Leaf size=82 \[ \frac {1}{2} \sqrt {\frac {\pi }{2}} C\left (\frac {2 x+1}{\sqrt {2 \pi }}\right )+\frac {1}{4} \sqrt {\frac {\pi }{2}} S\left (\frac {2 x+1}{\sqrt {2 \pi }}\right )-\frac {1}{2} x \cos \left (x^2+x+\frac {1}{4}\right )+\frac {1}{4} \cos \left (x^2+x+\frac {1}{4}\right ) \]

[Out]

1/4*cos(1/4+x+x^2)-1/2*x*cos(1/4+x+x^2)+1/4*FresnelC(1/2*(1+2*x)*2^(1/2)/Pi^(1/2))*2^(1/2)*Pi^(1/2)+1/8*Fresne
lS(1/2*(1+2*x)*2^(1/2)/Pi^(1/2))*2^(1/2)*Pi^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {3463, 3446, 3352, 3461, 3445, 3351} \[ \frac {1}{2} \sqrt {\frac {\pi }{2}} \text {FresnelC}\left (\frac {2 x+1}{\sqrt {2 \pi }}\right )+\frac {1}{4} \sqrt {\frac {\pi }{2}} S\left (\frac {2 x+1}{\sqrt {2 \pi }}\right )-\frac {1}{2} x \cos \left (x^2+x+\frac {1}{4}\right )+\frac {1}{4} \cos \left (x^2+x+\frac {1}{4}\right ) \]

Antiderivative was successfully verified.

[In]

Int[x^2*Sin[1/4 + x + x^2],x]

[Out]

Cos[1/4 + x + x^2]/4 - (x*Cos[1/4 + x + x^2])/2 + (Sqrt[Pi/2]*FresnelC[(1 + 2*x)/Sqrt[2*Pi]])/2 + (Sqrt[Pi/2]*
FresnelS[(1 + 2*x)/Sqrt[2*Pi]])/4

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3445

Int[Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Int[Sin[(b + 2*c*x)^2/(4*c)], x] /; FreeQ[{a, b, c},
x] && EqQ[b^2 - 4*a*c, 0]

Rule 3446

Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Int[Cos[(b + 2*c*x)^2/(4*c)], x] /; FreeQ[{a, b, c},
x] && EqQ[b^2 - 4*a*c, 0]

Rule 3461

Int[((d_.) + (e_.)*(x_))*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> -Simp[(e*Cos[a + b*x + c*x^2])/(
2*c), x] + Dist[(2*c*d - b*e)/(2*c), Int[Sin[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*
d - b*e, 0]

Rule 3463

Int[((d_.) + (e_.)*(x_))^(m_)*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> -Simp[(e*(d + e*x)^(m - 1)*
Cos[a + b*x + c*x^2])/(2*c), x] + (Dist[(e^2*(m - 1))/(2*c), Int[(d + e*x)^(m - 2)*Cos[a + b*x + c*x^2], x], x
] - Dist[(b*e - 2*c*d)/(2*c), Int[(d + e*x)^(m - 1)*Sin[a + b*x + c*x^2], x], x]) /; FreeQ[{a, b, c, d, e}, x]
 && NeQ[b*e - 2*c*d, 0] && GtQ[m, 1]

Rubi steps

\begin {align*} \int x^2 \sin \left (\frac {1}{4}+x+x^2\right ) \, dx &=-\frac {1}{2} x \cos \left (\frac {1}{4}+x+x^2\right )+\frac {1}{2} \int \cos \left (\frac {1}{4}+x+x^2\right ) \, dx-\frac {1}{2} \int x \sin \left (\frac {1}{4}+x+x^2\right ) \, dx\\ &=\frac {1}{4} \cos \left (\frac {1}{4}+x+x^2\right )-\frac {1}{2} x \cos \left (\frac {1}{4}+x+x^2\right )+\frac {1}{4} \int \sin \left (\frac {1}{4}+x+x^2\right ) \, dx+\frac {1}{2} \int \cos \left (\frac {1}{4} (1+2 x)^2\right ) \, dx\\ &=\frac {1}{4} \cos \left (\frac {1}{4}+x+x^2\right )-\frac {1}{2} x \cos \left (\frac {1}{4}+x+x^2\right )+\frac {1}{2} \sqrt {\frac {\pi }{2}} C\left (\frac {1+2 x}{\sqrt {2 \pi }}\right )+\frac {1}{4} \int \sin \left (\frac {1}{4} (1+2 x)^2\right ) \, dx\\ &=\frac {1}{4} \cos \left (\frac {1}{4}+x+x^2\right )-\frac {1}{2} x \cos \left (\frac {1}{4}+x+x^2\right )+\frac {1}{2} \sqrt {\frac {\pi }{2}} C\left (\frac {1+2 x}{\sqrt {2 \pi }}\right )+\frac {1}{4} \sqrt {\frac {\pi }{2}} S\left (\frac {1+2 x}{\sqrt {2 \pi }}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 66, normalized size = 0.80 \[ \frac {1}{8} \left (2 \sqrt {2 \pi } C\left (\frac {2 x+1}{\sqrt {2 \pi }}\right )+\sqrt {2 \pi } S\left (\frac {2 x+1}{\sqrt {2 \pi }}\right )+2 (1-2 x) \cos \left (x^2+x+\frac {1}{4}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sin[1/4 + x + x^2],x]

[Out]

(2*(1 - 2*x)*Cos[1/4 + x + x^2] + 2*Sqrt[2*Pi]*FresnelC[(1 + 2*x)/Sqrt[2*Pi]] + Sqrt[2*Pi]*FresnelS[(1 + 2*x)/
Sqrt[2*Pi]])/8

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 59, normalized size = 0.72 \[ -\frac {1}{4} \, {\left (2 \, x - 1\right )} \cos \left (x^{2} + x + \frac {1}{4}\right ) + \frac {1}{4} \, \sqrt {2} \sqrt {\pi } \operatorname {C}\left (\frac {\sqrt {2} {\left (2 \, x + 1\right )}}{2 \, \sqrt {\pi }}\right ) + \frac {1}{8} \, \sqrt {2} \sqrt {\pi } \operatorname {S}\left (\frac {\sqrt {2} {\left (2 \, x + 1\right )}}{2 \, \sqrt {\pi }}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*sin(1/4+x+x^2),x, algorithm="fricas")

[Out]

-1/4*(2*x - 1)*cos(x^2 + x + 1/4) + 1/4*sqrt(2)*sqrt(pi)*fresnel_cos(1/2*sqrt(2)*(2*x + 1)/sqrt(pi)) + 1/8*sqr
t(2)*sqrt(pi)*fresnel_sin(1/2*sqrt(2)*(2*x + 1)/sqrt(pi))

________________________________________________________________________________________

giac [C]  time = 0.13, size = 75, normalized size = 0.91 \[ -\left (\frac {1}{32} i + \frac {3}{32}\right ) \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\left (\frac {1}{4} i - \frac {1}{4}\right ) \, \sqrt {2} {\left (2 \, x + 1\right )}\right ) + \left (\frac {1}{32} i - \frac {3}{32}\right ) \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (-\left (\frac {1}{4} i + \frac {1}{4}\right ) \, \sqrt {2} {\left (2 \, x + 1\right )}\right ) - \frac {1}{8} i \, {\left (-2 i \, x + i\right )} e^{\left (i \, x^{2} + i \, x + \frac {1}{4} i\right )} - \frac {1}{8} i \, {\left (-2 i \, x + i\right )} e^{\left (-i \, x^{2} - i \, x - \frac {1}{4} i\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*sin(1/4+x+x^2),x, algorithm="giac")

[Out]

-(1/32*I + 3/32)*sqrt(2)*sqrt(pi)*erf((1/4*I - 1/4)*sqrt(2)*(2*x + 1)) + (1/32*I - 3/32)*sqrt(2)*sqrt(pi)*erf(
-(1/4*I + 1/4)*sqrt(2)*(2*x + 1)) - 1/8*I*(-2*I*x + I)*e^(I*x^2 + I*x + 1/4*I) - 1/8*I*(-2*I*x + I)*e^(-I*x^2
- I*x - 1/4*I)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 59, normalized size = 0.72 \[ -\frac {x \cos \left (\frac {1}{4}+x +x^{2}\right )}{2}+\frac {\cos \left (\frac {1}{4}+x +x^{2}\right )}{4}+\frac {\sqrt {2}\, \sqrt {\pi }\, \mathrm {S}\left (\frac {\sqrt {2}\, \left (x +\frac {1}{2}\right )}{\sqrt {\pi }}\right )}{8}+\frac {\sqrt {2}\, \sqrt {\pi }\, \FresnelC \left (\frac {\sqrt {2}\, \left (x +\frac {1}{2}\right )}{\sqrt {\pi }}\right )}{4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*sin(1/4+x+x^2),x)

[Out]

-1/2*x*cos(1/4+x+x^2)+1/4*cos(1/4+x+x^2)+1/8*2^(1/2)*Pi^(1/2)*FresnelS(2^(1/2)/Pi^(1/2)*(x+1/2))+1/4*2^(1/2)*P
i^(1/2)*FresnelC(2^(1/2)/Pi^(1/2)*(x+1/2))

________________________________________________________________________________________

maxima [C]  time = 1.21, size = 156, normalized size = 1.90 \[ \frac {512 \, x {\left (e^{\left (i \, x^{2} + i \, x + \frac {1}{4} i\right )} + e^{\left (-i \, x^{2} - i \, x - \frac {1}{4} i\right )}\right )} + \sqrt {4 \, x^{2} + 4 \, x + 1} {\left (\left (32 i + 32\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\sqrt {i \, x^{2} + i \, x + \frac {1}{4} i}\right ) - 1\right )} - \left (32 i - 32\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\sqrt {-i \, x^{2} - i \, x - \frac {1}{4} i}\right ) - 1\right )} + \left (128 i - 128\right ) \, \sqrt {2} \Gamma \left (\frac {3}{2}, i \, x^{2} + i \, x + \frac {1}{4} i\right ) - \left (128 i + 128\right ) \, \sqrt {2} \Gamma \left (\frac {3}{2}, -i \, x^{2} - i \, x - \frac {1}{4} i\right )\right )} + 256 \, e^{\left (i \, x^{2} + i \, x + \frac {1}{4} i\right )} + 256 \, e^{\left (-i \, x^{2} - i \, x - \frac {1}{4} i\right )}}{1024 \, {\left (2 \, x + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*sin(1/4+x+x^2),x, algorithm="maxima")

[Out]

1/1024*(512*x*(e^(I*x^2 + I*x + 1/4*I) + e^(-I*x^2 - I*x - 1/4*I)) + sqrt(4*x^2 + 4*x + 1)*((32*I + 32)*sqrt(2
)*sqrt(pi)*(erf(sqrt(I*x^2 + I*x + 1/4*I)) - 1) - (32*I - 32)*sqrt(2)*sqrt(pi)*(erf(sqrt(-I*x^2 - I*x - 1/4*I)
) - 1) + (128*I - 128)*sqrt(2)*gamma(3/2, I*x^2 + I*x + 1/4*I) - (128*I + 128)*sqrt(2)*gamma(3/2, -I*x^2 - I*x
 - 1/4*I)) + 256*e^(I*x^2 + I*x + 1/4*I) + 256*e^(-I*x^2 - I*x - 1/4*I))/(2*x + 1)

________________________________________________________________________________________

mupad [B]  time = 6.66, size = 64, normalized size = 0.78 \[ \frac {\cos \left (x^2+x+\frac {1}{4}\right )}{4}-\frac {x\,\cos \left (x^2+x+\frac {1}{4}\right )}{2}+\frac {\sqrt {2}\,\sqrt {\pi }\,\mathrm {C}\left (\frac {\sqrt {2}\,\left (2\,x+1\right )}{2\,\sqrt {\pi }}\right )}{4}+\frac {\sqrt {2}\,\sqrt {\pi }\,\mathrm {S}\left (\frac {\sqrt {2}\,\left (2\,x+1\right )}{2\,\sqrt {\pi }}\right )}{8} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*sin(x + x^2 + 1/4),x)

[Out]

cos(x + x^2 + 1/4)/4 - (x*cos(x + x^2 + 1/4))/2 + (2^(1/2)*pi^(1/2)*fresnelc((2^(1/2)*(2*x + 1))/(2*pi^(1/2)))
)/4 + (2^(1/2)*pi^(1/2)*fresnels((2^(1/2)*(2*x + 1))/(2*pi^(1/2))))/8

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{2} \sin {\left (x^{2} + x + \frac {1}{4} \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*sin(1/4+x+x**2),x)

[Out]

Integral(x**2*sin(x**2 + x + 1/4), x)

________________________________________________________________________________________